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Critical behavior of nonequilibrium phase transitions to magnetically ordered states
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~Received 23 August 2001; published 25 March 2002!

We describe nonequilibrium phase transitions in arrays of dynamical systems with cubic nonlinearity driven
by multiplicative Gaussian white noise. Depending on the sign of the spatial coupling we observe transitions
to ferromagnetic or antiferromagnetic ordered states. We discuss the phase diagram, the order of the transitions,
and the critical behavior. For global coupling we show analytically that the critical exponent of the magneti-
zation exhibits a transition from the value 1/2 to a nonuniversal behavior depending on the ratio of noise
strength to the magnitude of the spatial coupling.
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I. INTRODUCTION

In the last decade studying arrays of stochastically dri
nonlinear dynamical systems the notion of noise indu
nonequilibrium phase transition has been established@1–10#;
for a recent monograph see Ref.@11#. In close analogy to
equilibrium phase transition one has order parameters
finds continuous or discontinuous transitions associated
ergodicity breaking. The behavior near the transition poin
characterized by power laws and a critical slowing down

In this paper we consider arrays of spatially harmonica
coupled Stratonovich models@12# that undergo transitions
into ordered states comparable to ferromagnetic~FM! or an-
tiferromagnetic~AFM! phases depending on the sign of t
coupling constant. The AFM situation is described first
this paper for that class of models. We determine the ph
diagram and characterize the critical behavior at these t
sitions. For the globally coupled system we derive an a
lytical result for the critical exponent of the order paramet
i.e., the magnetization. This critical exponent exhibits a h
erto not described transition from a value 1/2 to a nonuniv
sal behavior when increasing the ratio of noise strength
magnitude of the spatial coupling.

The dynamics of the individual constituentsxi at the lat-
tice sitesi 51, . . . ,L is governed by a system of stochas
ordinary differential equations in the Stratonovich sense

ẋi5axi2xi
31xij i2

D

N (
j PN( i )

~xi2xj !, ~1!

whereN( i ) denotes the set of sites interacting with sitei. N,
the number of sites belonging to this set is equal toL21 in
the case of global coupling and to 2d in the case of neares
neighbor~NN! coupling on a simple cubic lattice ind dimen-
sions.D is the strength of the spatial interactions.j i(t) is a
zero mean spatially uncorrelated Gaussian white noise
autocorrelation function ^j i(t)j j (t8)&5s2d i j d(t2t8),
wheres2 is the noise strength.

The stationary probability densityPs(xi) fulfills the ~re-
duced! stationary Fokker-Planck equation@2#
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F S 2axi1xi

31
D

N (
j PN( i )

~xi2^xj uxi&!

1
s2

2
xi

]

]xi
xi D Ps~xi !G , ~2!

where ^xj uxi&5*dxjxj Ps(xj uxi) is the steady state cond
tional average ofxj , j PN( i ), given xi at site i. We denote
its spatial average by

mi5
1

N (
j PN( i )

^xj uxi&. ~3!

II. GLOBAL COUPLING

In the case of global coupling, fluctuations ofmi disap-
pear in the limitL→`. We thus may considermi as a pa-
rameter and obtain except for a constant factor a station
solution of Eq.~2!

ps~xi ,mi !5uxi u2(a2D)/s221e2(xi
2
12Dmi /xi )/s

2
. ~4!

If this expression is normalizable, the stationary probabi
densityPs(xi ,mi) reads

Ps~xi ,mi !5H @1/N~mi !#ps~xi ,mi ! for xiPsupport,

0 otherwise,
~5!

where N(mi)5*suppdxps(x,mi). Ps lives on a support on
which Eq.~4! is normalizable, i.e.,N is finite.

For bothD andmi nonzero the support ofPs is such that
Dmi /xi>0 ensuring normalizability of Eq.~4!. For mi50
normalizability requires that the exponent of the algebr
factor in Eq.~4! is larger than21, i.e.,D,a. For D.a the
solution~4! is not normalizable and we havePs(xi)5d(xi).
The determination ofmi is described below in detail.

Varying the control parameters of the systema andD, or
the strength of the noises2, one obtains the phase diagra
shown in Fig. 1.

We first considerD.0 which favors a FM order. In the
spatially homogeneous casemi[m and for m.0 or m,0
the support ofPs is @0,̀ ) and (2`,0#, respectively.
©2002 The American Physical Society10-1
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All constituents have the same~statistical or temporal!
average

^x&5E
supp

dx xPs~x,m!5 lim
T→`

1

TE0

T

dtx~ t !5F~m!, ~6!

which equals the spatial averagem ~ergodicity!. This leads to
the self-consistency condition

m5^x&5F~m! ~7!

determiningm. One easily finds

F~60!5H 6sGS a2D

s2
1

1

2D GS a2D

s2 D for a.D,

0 for a,D.
~8!

For a,ac
(1)52s2/2 Eq. ~7! has a trivial stable solution

m50 that loses its stability ata5ac
(1) , which is determined

by the conditionF8(0)51. It bifurcates into a pair of stable
solutionsm5m1.0 andm52m15m2 corresponding to a
continuous transition from a paramagnetic to a FM situati
Choosingm5m1 , for instance, the stationary probabilit
distribution of the corresponding ergodic component
Ps(x,m1), cf. Eq. ~5!. In the FM region, forac

(1),a,ac
(2)

5D the magnetizationm5^x& increases monotonously wit
s2, whereas fora.ac

(2) there is a nonmonotonous behavio
cf. Fig. 2.

As a function ofD, the magnetizationm increases con-
tinuously from zero when increasingD from zero for ac

(1)

,a,0, whereas the transition is discontinuous fora.0 as
shown in Fig. 3, cf. also Ref.@8#.

Within the FM region, a metastable@13# antiferromag-
netic solution (AFM* ) exists besides the stable FM solutio
for a.ac

(4) , see Fig. 1. The critical valueac
(4)53/2D

1s2/2 is obtained for weak noise from an extremal appro
mation form5^x& in the spirit of Ref.@5#.

FIG. 1. Phase diagram in the (D,a) plane for global coupling.
Continuous transitions toward FM or AFM states occur crossing
thick solid lines. The double solid line indicates discontinuous tr
sitions. The critical valuesac

(n) ,n51, . . . ,4, thedisordered phase
the metastable AFM* phase, and the insets are explained in the te
04611
.
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For D,0 the situation is different. Fora,ac
(2) we have

Ps(x)5d(x). In the rangeac
(2),a,ac

(3)5D1s2/2 one
findsm50 and the stationary probability densityPs(x) lives
on (2`,`), we call this the disordered phase. Fora.ac

(3)

the stationary solution~4! is normalizable only formÞ0, for
m.0 or m,0 the support is (2`,0# or @0,̀ ), respectively.
We define two subsystems labeled by1 and2 for which the
averageŝ xi& have 1 or 2 sign, respectively. For globa
coupling AFM order impliesm6→70 in the limit L→`.
Therefore, the mean values^xi&5^x6& are given by

^x6&52^x7&5E
0

6`

dx xPs~x,70!56F~60!, ~9!

wherePs is taken from Eq.~5!.

III. NEAREST NEIGHBOR COUPLING

For NN coupling on a cubic lattice a mean field appro
mation is obtained in a similar way replacing the spat
average over the 2d nearest neighbors asmi
51/(2d)( j PN( i )^xj uxi&'^xi&. The FM case,D.0, is for-
mally the same as for global coupling but Eq.~7! holds only
approximately. In the AFM case,D,0, one should take into
account that now the two subsystems1 and2 correspond to
different Néel sublatticesA and B, respectively, and all the
nearest neighbors of a given lattice site belong to

e
-

t.

FIG. 2. Order parameterm vs s2. The solid line is the solution
of Eq. ~7! compared with simulations of Eq.~1! for global ~circles!
and NN coupling ind51 ~triangles! and d53 ~squares!. For a
,ac

(2)5D ~a! the order parameterm increases monotonously with
s2 whereas fora.D ~b! a pronounced minimum appears. Th
parameters used area50 in ~a! anda51.5 in ~b!, D50.5.

FIG. 3. Order parameterm vs D. Lines and symbols have th
same meaning as in Fig. 2. For2s2/25ac

(1),a,0 the transition is
continuous~a!, whereas for 0,a it is discontinuous~b!. The pa-
rameters used area520.5 in ~a! anda51 in ~b!, s252.
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complementary sublattice. Self-consistency requires

m652^x6&52E
0

6`

dx xPs~x,m6!52m7 . ~10!

For D,0 system~1! is invariant under the transformatio
@15# xi→2xi for i PA, xj→xj for j PB, D→2D, a→a
22D. This implies that properties of the AFM phase f
spatial couplingD52D8,0 can be inferred from proper
ties of the FM phase for spatial coupling strengthD8, cf. Ref.
@16#. For instance,ac

(1)52s2/2 transforms intoac
(3)52D

2s2/2. The phase diagram for NN coupling is shown in F
4.

IV. CRITICAL BEHAVIOR

Varying the control parametersa and s2 one observes
continuous transitions from zero to nonzero values ofm with
a characteristic power law behavior near the critical value
the control parameters. To analyze the critical behavior i
useful to write the self-consistency equations~7! and~10! in
compact form as

m52
2uDu

s2 S ] ln I ~m!

]m D 21

, ~11!

where

I ~m!5E
0

`

dx x2(a2D)/s2
e2(x212uDum/x)/s2

. ~12!

In the limitss→0 or D→` this integral can be evaluated b
the Laplace method, cf., e.g., Ref.@17#. Inserting the results
in Eq. ~11! for small m, one obtains the power lawsm;(a
1s2/21uDu2D)1/2 for s→0 and m;(a1s2/2)1/2 for D
→` with the critical exponentb51/2, cf. also Refs.@2,4,8#.

For finite values ofs andD the scaling behavior ofI (m)
can be evaluated for smallm with the result@18#

FIG. 4. Phase diagram in the (D,a) plane for NN coupling. For
D.0 the situation is the same as for global coupling except that
metastable AFM* phase is absent here. For the caseD,0 see text.
04611
.
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I ~m!;m2(«2D)/s2
~11C1m22(«2D)/s2

1C2m2!, ~13!

where«5a2ac . The critical valueac is 2s2/2 for the FM
case and 2D2s2/2 for the AFM case. Inserting Eq.~13! in
Eq. ~11! we obtain for smallm and in lowest order of« the
power law

m;«b, b5sup$1/2,s2/~2uDu!%, ~14!

logarithmic corrections are easily computed. Obviously,
critical exponents are the same varyinga or s2, i.e., ba
5bs5b using notations from Ref.@8#. For models where
the cubic nonlinearity in Eq.~1! is replaced byxp11, p.0,
in Eq. ~14! the value 1/2 is replaced by 1/p @19#.

Figure 5 compares the magnetizationm(a) and the criti-
cal exponentb obtained from the analytical results wit
simulations for both global and NN coupling@20#. For global
coupling, simulations for systems of size 103 are already
very close to the results for the infinite system.

V. CONCLUSION

For the globally coupled model we found analytically
transition of the critical exponentb from a value 1/2, which
reflects the order of the nonlinearity and is independen
the strength of noises2 and spatial couplingD, to a nonuni-
versal behavior, depending ons2 andD independent of the
order of the nonlinearity. This differs from the valueb51
proposed for the continuous version of the model in Ref.@8#.

Critical exponents that depend continuously on para

e

FIG. 5. Critical behavior. The figure shows the order parame
m vs control parametera for different values ofD (s250.1, i.e.,
ac520.05) and the critical exponentba vs s2/(2D). ~a! and ~b!
refer to global coupling,~c! and ~d! to NN coupling ind53, re-
spectively. In~a! and ~c! the solid line is the numerical solution o
the self-consistency equation~11!. In ~b! and~d! the solid line is the
analytical result~14!; the 1 symbols represent the numerical sol
tion of Eq. ~11!. Circles and squares result from simulations of E
~1!. Error bars are partially smaller than the symbol size.
0-3
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eters~continuous exponents! have been found earlier in dif
ferent context both in equilibrium~e.g., Refs.@21,22#! and
nonequilibrium statistical mechanics~e.g., Refs.@23,24#!.
For a model similar to ours, Giada and Marsili@24# obtained
asymptotically for large values of the critical exponentb the
result b5s2/2 which is compatible with our more gener
result ~14! putting the spatial coupling strengthD51.

If the noise is not too strong, the ‘‘mean field’’ resul
describe the critical behavior for NN coupling observed
our simulations very well, cf. Fig. 5~d!. Also the numerical
resultb'1 obtained by Genovese and Mun˜oz @8# neara5
21, s252 for D51 ~their ‘‘weak noise phase’’! is in accord
with our analytical result~14!. For stronger noise, simula
e
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tions for NN coupling may differ considerably from th
mean-field prediction.

For models with a nonlinearityxp11, the value 1/p of b is
in general different from the value 1/2 characteristic f
models with only additive noise. In this case, one has
expect interesting crossover phenomena for models with
ditive and multiplicative noise when changing the relati
strength of the noises.
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