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Critical behavior of nonequilibrium phase transitions to magnetically ordered states
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We describe nonequilibrium phase transitions in arrays of dynamical systems with cubic nonlinearity driven
by multiplicative Gaussian white noise. Depending on the sign of the spatial coupling we observe transitions
to ferromagnetic or antiferromagnetic ordered states. We discuss the phase diagram, the order of the transitions,
and the critical behavior. For global coupling we show analytically that the critical exponent of the magneti-
zation exhibits a transition from the value 1/2 to a nonuniversal behavior depending on the ratio of noise
strength to the magnitude of the spatial coupling.
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I. INTRODUCTION
0
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= (_axi+xi3+ N E (i = (Xj[xi))
In the last decade studying arrays of stochastically driven ' SO
nonlinear dynamical systems the notion of noise induced
nonequilibrium phase transition has been establighedQ; toX a_xixi> Ps(Xi)
for a recent monograph see R¢L1]. In close analogy to
gquilibrium phase trgnsitio_n one has o.rlder parameters a_ﬂﬁhere(lexi)=fdxjxj P(xj|x) is the steady state condi-
finds continuous or d|scont|nuolus transitions as;qmatetj W!thona| average ok;, j e Mi), givenx; at sitei. We denote
ergodicity breaking. The behavior near the transition point ists spatial average by
characterized by power laws and a critical slowing down.

In this paper we consider arrays of spatially harmonically
coupled Stratonovich mode[d2] that undergo transitions mi:ﬁj;j\;(i) (xjlxi). ©)
into ordered states comparable to ferromagn@id) or an-
tiferromagnetic(AFM) phases depending on the sign of the
coupling constant. The AFM situation is described first in
this paper for that class of models. We determine the phase |n the case of global coupling, fluctuations wf disap-
diagram and characterize the critical behavior at these trarpear in the limitL—o. We thus may considemn; as a pa-
sitions. For the globally coupled system we derive an anarameter and obtain except for a constant factor a stationary
lytical result for the critical exponent of the order parameter,solution of Eq.(2)
i.e., the magnetization. This critical exponent exhibits a hith-
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Il. GLOBAL COUPLING

erto not described transition from a value 1/2 to a nonuniver- ps(Xi ,m;) = |xi|2(a—D)/02—1e—(Xi2+2Dmi Ix)lo? (4)
sal behavior when increasing the ratio of noise strength and
magnitude of the spatial coupling. If this expression is normalizable, the stationary probability
The dynamics of the individual constituentsat the lat-  densityP¢(x; ,m;) reads
tice sitesi=1, ... L is governed by a system of stochastic
ordinary differential equations in the Stratonovich sense PL(x M) = [I/N(m;)]ps(x;,m;) for X; e support,
R 0] otherwise,
(5
_ ; D .
Xi=ax—XP+x&— = > (X—X), (D) where N(m)) = [ gupfXps(X,m;). Ps lives on a support on

N j € which Eq.(4) is normalizable, i.e.N is finite.

For bothD andm; nonzero the support d®, is such that
. L , L Dm;/x;=0 ensuring normalizability of Eq4). For m;=0
whereN(i) denqtes the set'of sites interacting with 31@, normalizability requires that the exponent of the algebraic
the number of sites belonging to this set is equdltol in  t3ct0rin Eq.(4) is larger than—1, i.e.,D<a. ForD>a the
the case of global coupling and tal2n the case of nearest solution (4) is not normalizable and we hawy(x;) = 5(x;).
neighbor(NN) coupling on a simple cubic lattice thdimen-  The determination ofn; is described below in detail.
sions.D is the strength of the spatial interactiog(t) is a Varying the control parameters of the systarandD, or
zero mean spatially uncorrelated Gaussian white noise witkhe strength of the noise?, one obtains the phase diagram
autocorrelation  function (gi(t)gj(t’))=025ij5(t—t’), shown in Fig. 1.

whereo? is the noise strength. We first consideiD >0 which favors a FM order. In the
The stationary probability densiti(x;) fulfills the (re-  spatially homogeneous casge=m and form>0 or m<0
duced stationary Fokker-Planck equati¢g] the support ofPg is [0,2) and (—«,0], respectively.
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FIG. 1. Phase diagram in thé®(a) plane for global coupling.
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FIG. 2. Order parameten vs . The solid line is the solution
of Eq. (7) compared with simulations of E@1) for global (circles
and NN coupling ind=1 (triangles and d=3 (squares For a
<a®=D (a) the order parametan increases monotonously with

Continuous transitions toward FM or AFM states occur crossing ther® whereas fora>D (b) a pronounced minimum appears. The
thick solid lines. The double solid line indicates discontinuous tran-parameters used aee=0 in (a) anda=1.5 in (b), D=0.5.

sitions. The critical valuea(” ,n=1, . .. 4, thedisordered phase,

the metastable AF¥ phase, and the insets are explained in the text.

All constituents have the samstatistical or temporal
average

JTdtx(t)=F(m), (6)
0

1
dx xPy(x,m)= lim =
supp T

(x)=

T

which equals the spatial averageergodicity. This leads to
the self-consistency condition

m=(x)=F(m) (7
determiningm. One easily finds
a—D 1 a—D
*ol +-|T for a>D,
F(+0)= o> 2]\ o
0 for a<D.
€S)

For a<a("=—?/2 Eq.(7) has a trivial stable solution
m=0 that loses its stability ai=a’", which is determined
by the conditionF'(0)=1. It bifurcates into a pair of stable
solutionsm=m_ >0 andm=—m,=m_ corresponding to a
continuous transition from a paramagnetic to a FM situation
Choosingm=m,_ , for instance, the stationary probability

distribution of the corresponding ergodic component is

P(x,m,), cf. Eq.(5). In the FM region, foralY’<a<a{®
=D the magnetizatiom=(x) increases monotonously with
o2, whereas fom>a'? there is a nonmonotonous behavior,
cf. Fig. 2.

As a function ofD, the magnetizationm increases con-
tinuously from zero when increasing from zero foragl)
<a<0, whereas the transition is discontinuous &¥0 as
shown in Fig. 3, cf. also Ref8].

Within the FM region, a metastablel3] antiferromag-
netic solution (AFM) exists besides the stable FM solution
for a>al", see Fig. 1. The critical valua{"=23/2D

+ 0?12 is obtained for weak noise from an extremal approxi-

mation form={x) in the spirit of Ref.[5].

For D<O the situation is different. Fan<a? we have
P(x)=5(x). In the rangea®<a<a®=D+ 0?2 one
findsm=0 and the stationary probability densiy(x) lives
on (—o,), we call this the disordered phase. I-'a))>a(c3)
the stationary solutiofd) is normalizable only fom# 0, for
m>0 or m<<0 the support is { «,0] or[0,°), respectively.
We define two subsystems labeled-byand — for which the
averagesx;) have + or — sign, respectively. For global
coupling AFM order impliesm..— *0 in the limit L—oo.
Therefore, the mean valugs;)=(x.) are given by

(Xa)=—(Xz)= f:wdx XPy(X,F0)=*F(%=0), (9

wherePg is taken from Eq(5).

Ill. NEAREST NEIGHBOR COUPLING

For NN coupling on a cubic lattice a mean field approxi-
mation is obtained in a similar way replacing the spatial
average over the @ nearest neighbors asm;
:1/(2d)EJEM|)<X]|X|>%<X|> The FM CaseD>O, is for-
mally the same as for global coupling but Ed@) holds only
approximately. In the AFM cas® <0, one should take into
account that now the two subsystemsand — correspond to
different Neel sublatticesA and B, respectively, and all the

nearest neighbors of a given lattice site belong to the
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FIG. 3. Order parametan vs D. Lines and symbols have the
same meaning as in Fig. 2. Fera?/2=a‘’<a<0 the transition is
continuous(a), whereas for &a it is discontinuougb). The pa-
rameters used am=— 0.5 in (@) anda=1 in (b), g?=2.
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FIG. 4. Phase diagram in th®(a) plane for NN coupling. For i sl x =
D >0 the situation is the same as for global coupling except thatthe o9 ] ) 1
metastable AFM phase is absent here. For the cBse0 see text. . 1 . I
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complementary sublattice. Self-consistency requires

FIG. 5. Critical behavior. The figure shows the order parameter
*oo m vs control parametea for different values oD (0?=0.1, i.e.,
Me=—(Xs)=— j dX XPy(x,m.)=—mz. (100  a,=-0.05) and the critical exponer, vs o2/(2D). (a) and (b)
0 refer to global coupling(c) and (d) to NN coupling ind=3, re-
L . . spectively. In(a) and(c) the solid line is the numerical solution of
For D<0 system(1) is invariant under the transformation yhe self.consistency equati¢hl). In (b) and(d) the solid line is the
[15] Xj——X; for ie A, xj—X; for jeB, D——D, a—a  analytical resul{14); the + symbols represent the numerical solu-
—2D. This implies that properties of the AFM phase for tion of Eq.(11). Circles and squares result from simulations of Eq.
spatial couplingD=—D’<0 can be inferred from proper- (1). Error bars are partially smaller than the symbol size.
ties of the FM phase for spatial coupling strenBth cf. Ref.

[16]. For instance,af?l)=—02/2 transforms ihtoag3):2D . (M) ~m2(E=B)e%(14 C,m~2E-DV? L Com?), (13)
— 0?/2. The phase diagram for NN coupling is shown in Fig.
4, wheree =a—a,. The critical valuea, is — 0%/2 for the FM
case and B — ¢%/2 for the AFM case. Inserting E413) in
IV. CRITICAL BEHAVIOR Eq. (11) we obtain for smalim and in lowest order of the
power law

Varying the control parameters and o> one observes

continuous transitions from zero to nonzero valuemafith m~ef,  B=suf1/2,0%/(2|D|)}, (14)

a characteristic power law behavior near the critical values of

the control parameters. To analyze the critical behavior it idogarithmic corrections are easily computed. Obviously, the
useful to write the self-consistency equatid@sand(10) in  critical exponents are the same varyiagor o2, i.e., B,

compact form as = B,= B using notations from Ref.8]. For models where
the cubic nonlinearity in Eq(1) is replaced byP*1, p>0,
2ID| { 91n1(m)| L in Eq. (14) the value 1/2 is replaced byd[19].
m= — (—) , (11) Figure 5 compares the magnetizatimfa) and the criti-
a? Jam cal exponentB obtained from the analytical results with

simulations for both global and NN couplifg0]. For global

where coupling, simulations for systems of size®l1@re already
very close to the results for the infinite system.
* _ 2 2 2
I(m)= JO dx 2@ Dot (r2bimhle” (1) V. CONCLUSION

For the globally coupled model we found analytically a

In the limitsoc— 0 or D — <o this integral can be evaluated by transition of the critical exponem from a value 1/2, which
the Laplace method, cf., e.g., REL7]. Inserting the results reflects the order of the nonlinearity and is independent of
in Eq. (11) for smallm, one obtains the power lawa~(a the strength of noise-? and spatial couplind, to a nonuni-
+ 0?24+ |D|-D)¥2 for ¢—0 andm~(a+0?/2)Y? for D  versal behavior, depending @rf and D independent of the
— oo with the critical exponenB=1/2, cf. also Refg.2,4,8]. order of the nonlinearity. This differs from the valyg=1

For finite values ofr andD the scaling behavior df(m) proposed for the continuous version of the model in R&f.
can be evaluated for smath with the resultf18] Critical exponents that depend continuously on param-
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eters(continuous exponenthave been found earlier in dif-
ferent context both in equilibriunte.g., Refs[21,22) and
nonequilibrium statistical mechanid®.g., Refs.[23,24).
For a model similar to ours, Giada and Mar§#4] obtained in general different from the value 1/2 characteristic for
asymptotically for large values of the critical expongnthe  models with only additive noise. In this case, one has to
result 3= o?/2 which is compatible with our more general expect interesting crossover phenomena for models with ad-
result(14) putting the spatial coupling strengih=1. ditive and multiplicative noise when changing the relative
If the noise is not too strong, the “mean field” results strength of the noises.
describe the critical behavior for NN coupling observed in
our simulations very well, cf. Fig. #). Also the numerical
result 3~1 obtained by Genovese and Mar|8] neara=
—1,0?=2 for D=1 (their “weak noise phase’is in accord This study was partially supported by the DFG with Grant
with our analytical resul{14). For stronger noise, simula- BE 1417/3.

tions for NN coupling may differ considerably from the
mean-field prediction.
For models with a nonlinearity®*?, the value 1 of g is
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adopted to the stochastic case such that the noise is set con-
stant during one time step. The Gaussian white noise was gen-
erated by a Box-Miler algorithm. After thermalization we
computedn as the temporal average ovex30* time steps of

the spatial mean of; over all lattice sites. The time steps were
chosen small enough to avoid numerical instabilitiest (
=10"3%...10 ). To determinea, numerically, we exploited
that fora<a, starting with initial conditions corresponding to
m>0 the system relaxes in a finite timend <m. m’ serves

as initial condition fora’ =a+ Sa. Ilterating the procedurem
relaxes further as long as we are belaw, abovea, it in-
creases. The critical expone@twas obtained from the slope

of a linear fit of the plot Inm vs In(a—a.) in the range where

the first derivative of Im is almost constant. The parameter
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